SHOGUN  6.1.3
FirstOrderStochasticMinimizer.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) The Shogun Machine Learning Toolbox
3  * Written (w) 2015 Wu Lin
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright notice, this
10  * list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are those
27  * of the authors and should not be interpreted as representing official policies,
28  * either expressed or implied, of the Shogun Development Team.
29  *
30  */
31 #ifndef FIRSTORDERSTOCHASTICMINIMIZER_H
32 #define FIRSTORDERSTOCHASTICMINIMIZER_H
37 namespace shogun
38 {
39 
70 {
71 public:
75  {
76  init();
77  }
78 
84  {
85  init();
86  }
87 
92  virtual const char* get_name() const { return "FirstOrderStochasticMinimizer"; }
93 
97 
102  virtual bool supports_batch_update() const {return false;}
103 
108  virtual void set_gradient_updater(DescendUpdater* gradient_updater);
109 
114  virtual float64_t minimize()=0;
115 
125  virtual void set_number_passes(int32_t num_passes);
126 
130  virtual void set_learning_rate(LearningRate *learning_rate);
131 
136  virtual int32_t get_iteration_counter() {return m_iter_counter;}
137 
138 protected:
144  virtual void do_proximal_operation(SGVector<float64_t>variable_reference);
145 
147  virtual void init_minimization();
148 
151 
153  int32_t m_num_passes;
154 
156  int32_t m_cur_passes;
157 
159  int32_t m_iter_counter;
160 
163 
164 private:
166  void init();
167 };
168 
169 }
170 #endif /* FIRSTORDERSTOCHASTICMINIMIZER_H */
FirstOrderStochasticMinimizer(FirstOrderStochasticCostFunction *fun)
virtual void set_learning_rate(LearningRate *learning_rate)
The base class about learning rate for descent-based minimizers.
Definition: LearningRate.h:47
The first order stochastic cost function base class.
The base class for stochastic first-order gradient-based minimizers.
double float64_t
Definition: common.h:60
virtual void set_number_passes(int32_t num_passes)
virtual void do_proximal_operation(SGVector< float64_t >variable_reference)
virtual void set_gradient_updater(DescendUpdater *gradient_updater)
This is a base class for descend update.
all of classes and functions are contained in the shogun namespace
Definition: class_list.h:18
The first order minimizer base class.

SHOGUN Machine Learning Toolbox - Documentation